CHAPTER

Mass Transfer

14.1 Introduction

Mass transfer is an important topic with vast industrial applications in varied fields such as: mechanical, chemi-
cal and aerospace engineering, physics, chemistry, biology, etc. Few of the applications involving mass transfer
are:

(i) absorption and desorption (e.g. ammonia refrigeration systems}

(ii) solvent extraction

(iii) humidification (e.g. cooling towers and air-conditioning applications}
{iv) oxygenation of blood, food, etc.

(v) evaporation of petrol in internal combustion engines

(vi) neutron diffusion in nuclear reactors
{(vii) distillation columns to separate components in a mixture.

Numerous every day applications such as dissolving of sugar in tea, drying of wood or clothes, evaporation
of water vapour into dry air, diffusion of smoke from a chimney into atmosphere, etc., are also examples of mass
diffusion.

Our aim in this introductory chapter on mass diffusion is, primarily, to show the similarity between the heat
transfer and mass transfer processes. For an in-depth study of this topic, one should consult specialised books in
the field. .

Modes of mass transfer Mass transfer occurs whenever there is a concentration gradient between two fluids,
just as heat transfer occurs when there is a temperature gradient, Three modes of mass transfer may be distin-
guished:

(i) Molecular mass ditfusion This occurs when mass transfer takes place in a fluid at rest, as a result of
concentration gradient and is analogous to diffusion heat transfer in conduction due to temperature gra-
dients.

(ii) Convective mass transfer This occurs when the fluid is in motion. Now, the effect of velocity field also
comes into picture. Mass transfer may be between a moving fluid and a surface or between two moving
fluids, which do not mix with each other. In fact, now, the mass transfer is by both by molecular diffu-
sion and convective motion of the fluid. This process is analogous to convective heat transfer process and
for low concentrations and low mass transfer rates, many of the equations for convective mass transfer
will be identical to those derived for convective heat transfer.

(iii} Mass transfer by change of phase THere, again, both convection and diffusion are involved. Boiling of
water in an open pan, evaporation of a cryogenic liquid from its container, diffusion of smoke from a
chimney, etc., are familiar examples.

14.2 Concentrations, Velocities and Fluxes
It is necessary to define a few terms:



14.2.1 Concentrations
Mass concentration (or mass density) Mass concentration or mass density p, of a species A in a mixture is
defined as mass of component A per unit volume of the mixture. It is expressed in kg/m® units. Often, mass
concentration is also denoted by C; thus, C, = p,. '
Molar concentration (or molar density) Molar concentration or molar density #, of a species A in a mixture is
defined as the number of moles of component A per unit volume of the mixture. It is expressed in kg moles/m®
units. .

These two concentrations are related to each other as follows:

ny = LA (141)
My
where, M, = molecular weight of species A.
Mass fraction It is the ratio of mass concentration of species A to the total mass density of the mixture, i.e.

w, = LA (142)
fis
Mole fraction It is the ratio of molar density of species A to the total molar density of the mixture, i.e.
n
y, = (14.3)
H
For a binary mixture of two components, A and B, we have, by definition:
Pat+pPg=p _ : ..(14.4)
Mg+ ng=n .{14.5)
Wy +wg =1 : .{14.6)
Yatyp=1 -(14.7)

Ideal gas mixtures At low pressures, a gas or gas mixture can be considered as an ideal gas. Familiar example
of such a case is the mixture of dry air and water vapour existing under atmospheric conditions. Then, by
Dalton’s law, total pressure of the mixture is equal to the sum of the partial pressures of each component, and is
given by:
P=xP, .(148)
Here, F; is the partial pressure of component i and it is the pressure that would be exerted by the component
iif it alone occupied the whole mixture volume. Then, using the ideal gas relation (i.e. P.V = n.R,.T, where R, =
universal gas constant = 8314 ] /kg mole K), we can write:

N R, T
B__ v _Ni_
P NR, T N =Y .(14.9)
v

ie. pressure fraction is equal to the mole fraction.

14.2.2 Velocities
Mass diffusion may occur in a stationary medium or a moving medium. In a stajionary medium, the components
in a mixture move because of the concentration gradients only and the velocity of each species is equal to the
‘diffusion velocity’ only. However, if the medium is also moving, then, the absolute velocity of a species is equal
to the sum of the bulk flow velocity and the diffusion velocity.
Remembering that, m = p.V.A, we can write for a mixture of two components A and B:
m =, + my

ie. P Vinass A = PaVa A+ pg VA
Therefore,
. + .
Viwss = PAVATPBVE _ oy v, (14.10)
P
Here, Vi, is called the mass—average velocity of flow.

In the case of a stationary medium, mass-average velocity is equal to zero.
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When there is no concentration gradient, velocity of all species is equal to the mass-average velocity of flow;
and when there is a concentration gradient, average velocity of each component is given by:

Va = Vinass + Vit a .{14.11a}
and, Vi = Voo + Vaite s ..(14.11b)
Similarly, molar average velocity is defined by:
na-Va +ng-V
anlar = LA—HB“_B = yA‘VA +¥p VB ...(14.12)
n

And, molar average velocity of each component is given by:
Va = Vinotar + Vaitia ..-(14.13a)
and, Vi = Vinglar + Vi p .(14.13b)

From Egs. 14.11 and 14.13, we can write:
Mass diffusion velocities of A and B:

Vdiff_A = VA - Vmass (14143)

Vdiff_B = VA - Vmass (1414b)
Molar diffusion velocities of A and B:

Viitta = Va = Vinolar .(14.15a)

Ve s = YVa = Violar ..{14.15b)

14.2.3 Fluxes
For species A: Absolute flux = p4.Va.
Bulk motion flux = p4.V e
Diffusion flux = m,/A = mass flow per unit time per unit area.
Absolute flux of a component is as seen by a stationary observer.
It is equal to diffusion flux + bulk motion flux
ie.

m
pA'VA = _AA + pA'Vmass

ie.  Diffusion flux = mj‘ = 02V Pa-Vinass = Pa- (V4 = Vinass) . (14.16)

Similarly, on molar basis:
Diffusion flux = ng- (Vs ~ Vi) © {1417}

14.3 Fick’s Law of Diffusion
Consider a chamber, containing a mixture of two gases B and C, divided into two volumes by a partition in the
middle, as shown in Fig. 14.1.

To start with, let the gas mixture in volume B be Partition
rich in species B, and the volume C be rich in species
C. Now, if the partition is removed, molecules of B
would diffuse to the right, i.e. in the direction of de-
creasing concentration of B, and the molecules of C |
would diffuse to the left. Lower part of Fig. 141
shows the concentration profiles of B and C shortly
after the partition is removed. After sufficient time Concentration of
has elapsed, equilibrium conditions would be species B
achieved, i.e. uniform concentrations of B and C
would be attained and there would be no more mass
diffusion. Fick’s law relates the mass flux by diffu-
sion to the concentration gradient. It is stated as: ‘Dif-

— Concentration of
species C

fusion mass flux of a species through a medium is X
rtional to th trati dient”, i.e. ‘
proportionat fo The conc;nc ation gradient’, 1€ FIGURE 14.1 Fick's Jaw of diffusion for a binary
g = % - —DBC-TB kg/(sm?)  .(14.18) gas mixture
X
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where,
jz = mg/A = mass flux, kg/(sm?)
A = area normal to the line of propagation of mass, m®
Cp = concentration of species B which is diffusing, kg/m?
dCy/dx = concentration gradient for species B
Dy = diffusion coefficient or “diffusivity’ for the binary mixture of B and C, m?/s
The negative sign in Eq. 14.18 signifies the fact that diffusion takes place in the direction of decreasing
concentration, so that mass flux is a positive quantity.
Observe that unit of diffusivity is : m%/s.
Molar flux would be obtained by simply dividing f; by the molecular weight of species B, i.e.

Is= XJ:IB_ kg moles(sm?) (1419}
B

Note the close similarity of Fick’s law as given by Eq. 14.18 to the Fourier’s law of heat conduction and to the
Newton's law of viscosity, i.e.

= % = k’z—: =g % (2 C, T) (Fouier's Inw of heat conduction)
r= p—d—u = I/-i (p-u) (Newton's law of viscosity)
dy  dy

We can state that:

Fourier’s law ...describes transport of energy due to temperature gradient

Newton’s law...describes transport of momentum due to velocity gradient, and

Fick’s law...describes transport of mass due to concentration gradient.

, Further, units of mass diffusivity (1), thermal diffusivity (), and kinematic viscosity (v} are all same, i.e.

m*/s.

Now, while dealing with perfect gases, we can express the concentration gradient appearing in Fick’s Eq. 14.18,
in terms of partial pressures, as follows:

For species B:

Pp=ppRyT (Perfact gas law)
ie. Pe = Pp J};"T {where, R, = Universal gas constant = 8314 ]/ (kg mole K))
B

In the above, pp = partial pressure of species B,
pp = density of species B,
My = the molecular weight of species B,
and, T is the absolute temperature in Kelvin.
Remembering that density is nothing but concentration, i.e. pz= Cy, we write, substituting for gg in Eq. 14.18:

Jg = % == Dﬂc'a;&
T
Le fo= % =— Dy R}:I-Iif-% .(14.20)
Similarly, for species C, we can write:
Jo = % - CB-RAfF—T-%C .{14.21)

Note that Eqs. 14.20 and 14.21 are valid for isothermal conditions only.
Following points must be noted well in connection with the Fick’s law equation 14.18;
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(i) This law is valid for mass diffusion, only due to concentration gradient. It is not applicable to the case of
mass diffusion occurring due to other reasons such as pressure gradierits, temperature gradients or other
external forces.

(ii) Fick’s law, like Fourier's law, is derived as a result of experimental observations; it is not derived from
first principles analytically.

(iii) Mass diffusion occurs in the direction of decreasing concentration, just as heat transfer occurs in the
direction of decreasing temperature.

(iv) Diffusion coefficient (D) depends upon pressure, temperature and the nature of the component con-
cerned; however, it may be assumed as constant for ideal gases and dilute liquids for a given range of
temperature and pressure.

Diffusion coefficient (D):
For gaseslgas mixtures:

From kinetic theory of gases, it can be shown that at ordinary pressures, diffusion coefficient is independent
of mixture composition, but increases with temperature and decreases with pressure, i.e. for a binary gas mixture
of two components B and C, we have:

3 1
2 2
D= 0.0043-—1‘———2- A Pemss {1422}
1 1Y \Mp Mc

where,
p; = total pressure {atm.)
T = absolute temperature (K}
Mg, M = molecular weights of gas species
V,, V, = molecular volumes of B and C at normal boiling points, cm®/gm. mole
Molecular weights and molecular volumes of a few gases are given in Table 14.1.
Data in Table 14.1 is useful to estimate the diffusion in binary gas mixtures.
From Eq. 14.22, it is clear that:

3
D _ [ﬂ]z.(ﬂ] - .{14.23)
Dy \L P

i.e. if the diffusion coefficient at a certain temperature and pressure are known, then the diffusion coefficient at
any other pressure and temperature can be estimated using Eq. 14.23. Note that the temperatures must be ex-
pressed in Kelvin.

Table 14.2 gives values of Diffusion coefficient and Schmidt numbers for a few substances diffusing through
air at 25°C and 1 atm. Eq. 14.23 may be used to get values of diffusion coefficient at any other desired tempera-
ture and pressure.

TABLE 14.1 Molecular weights and molecular volumes for a few gases

Air 29 29.89
Ammonia (NH,) 17 25.81
Carbon dioxide (CO,) 44 34.00
Carbon menoxide (CO) 28 30.71
Hydrogen (Hy) 2 14.28
Nitrogen (N} 28 31.20
Oxygen (O,) 32 25.63
Sulphur dioxide (SO,) 64 44.78
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TABLE 14.2 Mass diffusivity and Schmidt number for a few gases and vapours diffusing through air at 25°C

and 1 atm.
Substance o _ Mass diffusivity, Dinf/s) - - |- . Schmidt number, 8c = viD
Ammonia 0.280 x 107 0.78
Carbon dioxide 0.164 x 1074 0.94
Hydrogen 0.410 x 107* 0.22
Oxygen 0.206 x 1074 0.75
Water 0.256 x 107* 0.60
Methanol 0.159 x 1074 0.97
Ethyl alcohot 0.119 x 1074 ) 1.30
Acetic acid 0.133 x 107% 1.16
Benzene 0.088 x 107* 1.76
Toluene 0.084 x 1074 1.84

For the practically important case of diffusion of water vapour in air, following formula has been proposed
by Marrero and Mason:
2.072

DH,0_air = 1.87 x 1077 r m?/s 280 K < T < 450 K...(14.24)

where, P is the total pressure in atm. and T is the temperature in Kelvin.
Values of I} at 1 atm., as calculated from Eq. 14.24, are given in Table 14.3:

TABLE 14.3 Diffusion coefficient for water vapour in air at 1 atm.

0 : 2.09E-05

5 2.17E-05
10 2.25E-05
15 2.33E-05
20 2.42E-05
i 25 2.5E-05
30 2.59E-05
35 2.68E-05
40 2.77E-05
45 2.B6E-05
50 2.96E-05
55 3.05E-05
60 3.15E-05
65 3.25E-05
70 3.35E-05
75 3.45E-05
80 3.55E-05
85 3.66E-05
90 3.77E-05
95 3.88E-05
100 3.98E-05
105 4.1E-05
110 4.21E-05
115 4.32E-05
120 4.44F-05
125 4 56E-05

Contd,
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Contd.

130 4.68E-05

135 4.8E-05
140 4.92E-05
145 5.05E-05
150 5.17E-05

For steady state diffusion through a non-diffusing, multi-component mixture, an ‘effective diffusivity” is de-
fined as:

D= SIS S (14.25)
Yoo, Yo o Ya T
Dip Do Dy
where, Yy Yo Yo - = mole fractions of components on a free basis

D D, D, ... = diffusivities of species A through B, C, D ...

For dilute liquids:
Following semi-empirical relation is suggested to estimate the diffusion coefficient of dilute liquids:

T

F=_.' .
Dag-pp

.(14.26)
where,
T = absolute temperature (K)
D, = diffusivity of solute A through a solvent B, (m*/s)
My = viscosity of solvent B {centipoises}), and
F = a function of molal volume of solute A, Ks/cm”.centipoise...determined from charts
Table 14.4 gives mass diffusivity values of a few liquids at 20°C with water as solvent:
Observe that mass diffusivity in liquids is much lower than in gases; therefore, diffusion in liquids occurs at
a much slower rate than in gases.
For solids:
Diffusion in solids occurs still at a lower rate as compared to that in gases and liquids. This is evident from
the Table 14.5, which gives mass diffusivity values for a few substances diffusing through some solids.

14.4 General Differential Equation for Diffusion in Stationary Media

This equation for mass transfer of any species is derived in a manner analogous to the derivation of general
differential equation for conduction. .

TABLE 14.4 Mass diffusivity of liquids at 20 deg.C, with water as solvent

"Sowte . ol .. . D (n'h) Schmidf number, Sc = VD
Oxygen 1.80 x 107° 558
Carbon dioxide 177 x 107° 559
Ammonia 1.76 x 107° 570
Hydrogen 513 x 107° 196
Chiorine 122 x 107° 824
Hydrochloric acid 2.64 x 107° 381
Sulphuric acid 1,73 x 107° 580
Acelic acid 0.88 x 10°° 1140
Ethanol 1.00 x 107% 1005
Urea 8.06 x 107° 946
Glucose 0.60 x 107° -
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TABLE 14.58 Diffusion through solids at 1 atm.

g pingupe
Carbon dioxide Natural rubber 298 1.1 % 10710
Nitrogen Natural rubber 298 1.5 10710
Oxygen Natural rubber 298 21 x 107
Helium Pyrex 773 20x 107"
Helium Pyrex 203 45x 1078
Helium Silicon dioxide 298 40x 107"
Hydrogen Iron 298 26 x 107"
Hydrogen Nickel 358 1.2x 1072
Hydrogen Nicket 438 1.0 x 107
Cadmium Copper 293 27x 10"
Zinc Copper 773 4.0x 1078
Zinc Copper 1273 5.0 x 10713
Antimony Silver 293 35x%x 1075
Bismuth Lead 293 1.1 x 10720
Mercury Lead 293 25x 1071
Copper Aluminium 773 40x 107"
Copper Aluminium 1273 1.0 x 107'°
Copper iron {fec) 773 5.0 x 107"
Carbon tron (fcc) 1273 3.0x 107"

Consider a differential control volume in a
given stationary medijum (i.e. mass average veloc-
ity of the mixture is zero) as shown in Fig, 14.2.
Assumptions:

3 (i} Species B is diffusing through a solid or
" {Jp +Jald/glox).ax} through a stationary fluid medium C
’ (ii) Mass transfer is by concentration differ-
dx 4 ence only, and influence of other effects
such as pressure, temperature or other
forces is negligible
(iii) Diffusivity is constant in all directions
(Isotropic).
Consider the mass balance of species B:
z Along the X-direction:
FIGURF. 14.2 General differential equation for mass Mass influx at the le-ft surface = (m,/A) dy.dz
diffusion Mass efflux at the right surface = {(m,/A4) +
{0/ 0x)(m,/A).dx).dy.dz
Therefore, accumulation of species B in the elemental volume due to diffusion in X-direction =
(my/ A)dy.dz — {(m,/A) + (9/8x)(m,/ A).dx}.dy.dz = —(3/3x)(m,/ A).dx.dy.dz

Similarly, accumulation of species B due to diffusion in the Y and Z directions are:

Y-direction: —(a/dy)(m,/A).dx.dy.dz

Z-direction: —(3/9z)(m,/A).dx.dy.dz

Therefore, net accumulation of species B =

- {{8/dx)(m/A) + (3/0y){m,/ A) + (3/9z)(m,/ A) dx.dy.dz -.{i)

Let g, be the generation of mass species per unit volume (say, due to some chemical reaction). Then, total

mass of species generated =

dz

Is—>

x ¥

gpdx.dy.dz ) ..(if}

Now, net effect of the mass accumulation due to diffusion and mass generation in the volume is an increase
in the mass concentration of species B; this results in a time rate of change of mass concentration in the control
volume, and is given by:
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(0C,/07).dx.dy.dz . (iid)
Then, writing the mass balance,
— [(@/9x Y,/ AY + (8/0y)(m,/A) + (3/0z)(my/A)) dx.dydz + gy dxdy.dz =
(9C,/d7).dx.dy.dz
Cancelling (dx.dy.dz) throughout and using Fick's law, i.e. {m,/A) = ~D.{9Cy/ dx),
(9C,/31) = (@/09x)(D.(3C,/ax)} + (9/0w){D.(3C,/ay)}
+ (9/92){D.(aC,/92)} + g4, ..(14.27)
Eq. 14.27 is the general differential equation for mass transfer by diffusion in a solid or stationary medium,
with constant D and with internal mass generation.
With no internal mass generation (g, = 0), and constant D, we have:
(9C,/39) = DA@°C,/3x%) + (3°Cy/3y™) + (3°C,/02%)) = DVG, ..(14.28)
To obtain the concentration gradient, and the mass diffusion rate, Eq. 14.28 has to be solved with the appro-
priate boundary conditions.
Eq. 14.28 can be written as:

Vi, = (1/D).QC,/37) {1429)
Observe that Eq. 14.29 is similar in form to the heat conduction equation, i.e.
V2T = (1/2).(0T/37) (differential equation of heat conduction )

Boundary conditions generally encountered in practice are:

1. Specified concentrations at the boundary: C, = Cypat x =0and C, =Gy atx =1L

2. Impermeable surface at the boundary: aC,/dx =G at x =0

3. Specified mass flux at the surface: j, =(m;,/A) = ~D,,.(8C;/dx} at x = 0

4. Specified mass transfer coefficient (convective) at the surface: j, = b, {Cys — Cy) where ki, = convective
mass transfer coefficient, C,, = concentration in the fluid adjacent to the surface, and Cj, = bulk concentra-
tion in the fluid strearn.

14.5 Steady State Diffusion in Common Geometries Concentration profile

Now, we shall derive relations for concentration profiles and mass transfer rates
in a few simple geometries such as a plain membrane, cylindrical shell and
spherical shell.

14.5.1 Steady State Diffusion Through a Plain Membrane
Consider a plain membrane whose thickness L is small compared to its other di-
mensions, i.e. mass diffusion through this membrane can be considered as one-
dimensional. See Fig. 14.3.

Then, for steady state (i.e. (3C,/37) = 0) and cne-dimensional diffusion, dif- -
ferential equation 14.29 reduces to: FIGURE 14.3 Diffusion
through a plain membrane

> (m,/A)

Cyo

AN

2
d Eb _o
dx
. ac
Integrating, d_xb =C,
Integrating again, C=Cx+GC (a}
BCs: C,=Cyatx=0,and (,=Cpatx=L
Cpy - G
Therefore, C,= C; and,  C; = —’-’iL—bl
Subst. in Eq. a:
x
Gy = o= Co) 7+ Cin ..(14.30)

Eq. 14.30 gives the concentration profile, which is a straight line as shown in Fig. 14.3.
Now, mass transfer rate is obtained by applying the Fick's law, i.e.
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My p, 4G
A dx
ie Lic > i[{c 7C)5+c]
€ A T L e
ie. L Db'( Cop - .Cbl)
A L
. " D,
ie. 7” =+ wai-(q,, - Cp) (14.31)
Eg. 14.31 gives the mass flux through the membrane.
Alternatively:

Since D, is constant, we can directly integrate the Fick’s law equation between x = 0 and x = £, after separating
the variables:

We have, from Fick's law:

™ _p, 4%
A dx
Separating the variables and integrating,
mfl L C!JZ
— | dx =-D, dG (assuming Dy = consfant)
b b 8 Ly
A Jo Cpy
ie. % = % {Cp1 — Cpo) (same as Eq. 14.31)
e " Cy1 -G Concentration potential
1€, = =
b L Diffusion resistance
D,-A

Note that the above equation gives diffusion mass flow rate (kg/s), which can be expressed in a form analo-
gous to Ohm's law, i.e. as a ratio of concentration potential to the diffusion resistance.
Therefore, diffusion resistance for a plane membrane is given by:

Rmembrnne = _D_:_.E S/mj (1432)

Concentration profile is obtained by using the fact that in steady state, the mass diffusion rate through any
section in the membrane must be constant. Let at any x, the concentration be C;. Then, from Eq. 14.31,

m, Dy
M o2 ey -C
A . Gy~ G)
Equating this with Eq. 14.31,

my _ Dy Dy
b G, -C) = =G, - €
A ¥ ( b1 b) I ( Ll b2)

e (Ce1-Cp) _ (G- Cp)

o x L

ie. G, = (Cpo— cm)j“i + Gy (same as Eq. (14.30))

Note that diffusion mass transfer and conduction heat transfer are analogous.

14.5.2 Steady State Diffusion through a Cylindrical Shell

Consider a cylindrical shell of length L and inner and outer radii equal to r; and ry, respectively, as shown in Fig.
14.4. Let the corresponding concentrations of species B at these radii be Cpy and Cy,.
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Assumptions:
1. Steady state, one-dimensional diffusion in the r direction only ~ Cp,
2. Constant D
3. No internal mass generation
Now, consider an elemental cylindrical shell at any radius r, with
a thickness dr.
We have, from Fick’s law:

mg, kgls

my 3G Cancentration profite
A " odx
For this system we write:
_ M _ _Db.@ FIGURE 14.4 Diffusion through a
2-mrL dr eylindricel sheli

Separating the variables, and integrating from r, to r;:

m Chg
m*"J. (l)dr =_Db.2‘;1-.L.J‘ dc, (assunting
W AT o=
ie. m,,-ln[ij = 27Dy L+ (Cyy = Cp)
h
i_e_ mb = _C_*’l.ﬁ kg/s
ml| 2
h
27D, L
ie. m, = .Cﬂ.:.gl‘_z_ kg/S
RdiHﬁcyW

e}
l [-]
A\ s/m? = diffusion resistance of cylindrical shell

where, R, =
diff_cyl 2~JT'D!, L

To get concentration distribution with radius:
Integrating from r, to r, {and concentration from Cy; to C;), Eq. 14.33 becomes:

Cb1 - C!w

27D, L

m, = kg/s

Dy = constant)

..(14.33)

(14.34)

..(14.35)

But, in steady state, since mass flow rate is same through each section of the cylindrical shell, equating Egs.

14.33 and 14.35, we get:
Cm - Chz CM - Ch

ie. =
Cpz =Gy ln[rz]

MASS TRANSFER 733

..(14.36)




Eq. 14.36 gives the concentration distribution in the cylindrical shell as a function of radius, r. Note that the
concentration distribution is logarithmic. This profile is also shown in Fig. 14.4.

Now, bringing in the concept of ‘log mean area’ for a cylindrical system, just as we did in the case of one-
dimensional conduction through a cylindrical shell (see Chapter 4), we can write:

_ DGy =Cy)

(143
Ax m (14.37)

My

2. L(n,—n)
(3]
n

14.5.3 Steady State Diffusion through a Spherical Shell
Consider a spherical shell of inner and outer radii equal to r; and 7,, respectively, as shown in Fig. 14.4. Let the
corresponding concentrations of species B at these radii be C,; and G,
Assumptiens:

1. Steady state, one-dimensional diffusion in the r direction only

2. Constant D

3. No internal mass generation

Now, consider an elemental spherical shell at any radius 7, with a thickness dr.

We have, from Fick’s law:

where, Ax ={r,—r)and, A, = = log mean area.

Mo _p 45
A dx
For this system:
m, dc,

D..
4.7 b dr

Separating the variables and integrating from r, to ry:

n 2
m,-I (iz]dr = —D,,-4-:r~J‘Cb dc, (assuming D, = constant)
n AT Ch1
. 1 1
ie. - [—- - —] =4- 1D, (Cypy — Gip)
hnon
ie. my = In=Cy kg/s .(14.38)
1.1
IRE
47D,
ie. ", = G =G ...(14.39)
Rdﬂf_sph
-
where, ' Raist sph = A\ R) s/m® = diffusion resistance of spherical shell

4.n1-D,

To get concentration distribution with radius:
Integrating from r, to r, {(and concentration from C, to C,), Eq. 14.38 becomes:

Cn - Cb

41D,

my = kg/s ..{14.40)
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But, in steady state, since mass flow rate is same through each section of the cylindrical shell, equating Eqs.
14.38 and 14.40, we get:

Cm - Cbz Cbi - Cb

1_1)
h h

47D, 4-7.D,

11
. Cb Cbl r n
ie. = .(14.41
CooCy 1 1 (1441
noh

Eq. 14.41 gives the concentration distribution in the spherical shell as a function of radius, r. Note that the
concentration distribution is hyperbolic.

Now, bringing in the concept of ‘mean area’ for a spherical system, just as we did in the case of one-dimen-
sional conduction through a spherical shell (see Chapter 4), we can write:

D,-(Cy -C
my = D€ =Cro) 4 .{14.42)
Ax :
where, Ax = (r, - ;) and, A, = 4-7-r,-r, = mean area.

Solubility facter S:
Species concentration at the gas-solid interface is generally stated in terms of partial pressure of gas adjoining the
interface and a “solubility factor, 5'. Then,

C,=5p, ' (14.43)
where, p, = partial pressure, and, S = solubility.
Solubility data for selected gas solid combinations are given in Tabl 14.6.

TABLE 14.6 Solubility of selected gases and solids {For gas i, S = C; s siae/P’, gos side)

Q, Rubber 298 0.00312
N, Rubber 298 0.00156
CO, Rubber 298 0.04015
He Si0, 293 0.00045
H, Ni 358 0.00901

{Note: Permeability, P = S-Dyg where Dyg = diffusivity of gas in solid.)

Summary Table Formulas for one-dimensional, steady state diffusion in simple geometries are summarised in

Table 14.7 below:

Exemple 14.1.  Air is contained in a vessel at a temperature of 20°C and pressure of 2 bar. Assuming the partial pressures
of O, and N, to be in raties of 0.21 and 0.79, respectively, calculate: (i) Molar concentrations (i1) Mass concentrations {i.e.
densities), (iil) Mass fractions, and (iv) Molar fractions.

Solufion.

Data:

T:=20+273K p:=210 Pa Fo = % R, := 8314 | /kg mole K M, =32 My, =28

Pn,

(il Molar concentrations

Po,
"o = Ry T
i 0.21'p
1€, ﬂol = ﬁ
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TABLE 14.7 One-dimensional, steady state diffusion in simple geometries

Plane membrane Cun zcaz _L Cp-Cn _x
D,-A Caa - Cm
D, A
Gy =C (%) o-c "(5)
Cylindricat shell = b1 T2 _Ah s~ Cw _ _\R
|n[fa 2.2DyL Ciz — G |n[-"_2J
h n
2xD,-L
[1_ 1 1.1
C,-C Lo C, -C, ro
Spherical shel ot s Wt | 12 ' A f
1_1 47D, Cp —Cy l_l
h & LR
4.7.D,
ie. . ng, = 0.017 kg mole/m’ {molar concentration of Oxygen.)
Similarly,
_ PN
M = BT
. 79.
l1.e, nNz = R ;{
ie. ny, = 0.065 kg mole/m® (molar concentration of Nitrogen.)

(ii) Mass densities

We have the relation between molar and mass densities:

Therefore,

ie
Similarly,

ie.
(iii) Mass fractions
Total mass density,
ie.

Therefore,

ie.

and,

ie.

Pa
M,

Ry =

Po, = Mo, Ho,
Po, = 0.552 kg/m®

Prg = My, 1y
Pn, = 1.816 kg/m®

Pz Po, * PN,

p=2368 kg/m>
.. Po,
Wo, = ?
wg, = 0.233
. P,
wN2 = T
wy, = 0.767

FUNDAMENTALS OF HEAT AND MASS TRANSFER
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{mass density of Nitrogen.)
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(iv) Molar fractions

Total molar concentration, ni=ng, + My,
ie. n = 0.082 kg mole/m’
Therefore,
Lo
boy 1= =
ie. Yo, = 0.21 (mole fraction of Oxygen.)
and,
i,
=
ie. Yy = 0.79 {mole fraction of Nitrogen.)

Note that mole fractions should be equal to partial pressure fractions.
fxomple 14.2. Calculate the diffusion coefficient of ammonia (NH;) in air at 20°C and 1 atm. pressure. Then, calculate
the value of D for a pressure of 3 atm. and temperature of 57°C.
Solutisn.  We shall use the empirical relation given by Eq. 14.22:

3

1
2 7
D = 0.0043. T . ML+MLJ cm?/s .(1422)
1 1 8 C
Pt '[Vb:’ +V3 }

where,  p, = total pressure (atm.)
T = absolute temperature (K)
Mz, M = molecular weights of gas species
V;, V. = molecular volumes of B and C at normal boiling points, em®/gm mole. :

Let us denote B for NH, and C for air. Getting the data for molecular weight and molecular volumes from Table
14.1, we have:
Data:

P:=latm. My:=17 V,=258lcm’/gm M. =29 =298 em’/gm  T:=20+273K

Then,

F 2
beogoss T (1, L
o1 My M
Pe- Vb3 + Vc3
ie ’ D = 0.179 cm*s (Diffusiviy of NH, in air at 1 atm and 20°C.)
(ii) At 3 atm. And 57°C
We have the relation:
2
2
b _(L)y (A .(14.23)
D, T, P,
Here, D, :=0179 mi/s
T,=20+273K
P, :=1 atm
P, =3 atm
Tp:= 57 + 273K
Therefore,
= D'I
Dy= s
oL
T, B
ie. D, = 0.642 cm/s (Diffusiviy of NH; in air af 3 atm and 57°C.)
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ole 143, A steel, rectangular container having walls 15 mm thick, is used to store gaseous hydrogen at elevated
4ssure. The molar concentrations of hydrogen in steel at the inside and outside surfaces are 1 kg mole/m® and zero,
sespectively. Assuming the diffusion coefficient for hydrogen in steel to be 0.25 x 107% m?/s, calcuiate the molar diffu-
sion flux for hydrogen through steel. : M.U. 1999)
Solution.
Data:
L=0015m D;:=025.10"m%s (,:=1kgmole/m® C,:= 0.0 kg mole/m?
We have, for molar flux through a plane membrane:

Jo = Gy ~ C) kg mole/ (mis)

ie Iy = 16.667 1012 kg mole/m’s (Molal flux of H, through steel.)
Exomple 14.4. Hydrogen gas at 2 bar, 25°C is flowing through a vulcanised rubber tube, 30 mm ID, 50 mm OD. Solubil-
ity of H; in rubber is 0.053 m” of H, per atm. per m® of rubber at 25°C. Diffusivity of H, through rubber is 18 x 107! m?/
s. Density of H, is 0.0899 kg/m® at 1 bar pres-sure and 0°C. Calculate percentage reduction in hydrogen loss if the rubber
pipe is covered by 2.5 mm thick steel tubing. Assume diffusivity of H, through steel as 1.0 x 102 m¥/s at 25°C. (M.U.)
Solution. See Fig. Ex. 14.4.

Steel tubing
Rubber tubing M,,. kg/s Rubber tubing

M, kgis

Ch2 =0 Ch2 Ch2 =0

I
r 1
p)
-
3

{a) only rubber tubing (b) with steef tubing over the rubber tubing

FIGURE Example 14.4 Diffusion through a cylindrical shell

Data:
Pi=2x10°Pa  L:=1m £:=1510%m 1£:=2510"m r:=r+25.10°m 7T,:=25+273K
Dy, ruer = 18-107 m%/s Dy pger = 1-1072 m/s
Solubility of hydrogen in rubber at 1 bar = 0.053 m®/bar/m” of rubber

Therefore, solubility at 2 bar pressure: § = 2.0.053 m*/m? of rubber
ie. §:= 0.106 m*/m® of rubber

Gas constant R for Hydrogen:
Given that at 1 bar, 0°C, density is 0.0899 kg/m®

Therefore, Ry = P

pT
5
ie. Ry = —2OX107
+ 7 0.0899 x 273
ie Ry, = 4.075-10° J/kgK

Biffusion through rubber wall:
S-A

Ch=m = R ;_ ke/ m® of rubber (concentration on the inside surface)
H, "1
ie. Cyy = 0.01746 kg/m® of rubber
and, ) Cyz = 0 kg/m® of rubber (concentration on the outside surface)
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Therefore, resistance to diffusion through rubber:

T,
R it _rubber = T D L DH;:uhber' T s/m° {for eylindrical shetl)
ie. Rt cubber = 4517 108 s/m®.
Case (i): Only rubber tubing:
Mass diffusion rate: my, = Cu=Cr
Rdiftrubber
ie. my,; = 3.866- 1071 kg/s.

Case (ii): With steel casing over rubber tubing:
Now, resistance to diffususion through steel:

3]

Rt sreer = m s/m’ (for cylindrical shetl)
ie. Ry sweet = 1.517 x 10" s/m’
Therefore,
Rigeat = Rait_rubber + Ruist steel
ie. Ry = 1.562- 10" 5/m?
C,. —
And, Myy = ﬂ—&
Reowa
ie. m, = L118-107 2 kgfs {mass dffusion rate of H, with steel tubing over the rubber turbing.)
Therefore, percentage reduction in mass diffusion because of steel turbing:
Reduction := —#— 2 100
Mpy
ie. Reduction = 97.109% (percentage reduction as a result of putting steel tubing over rubber tubing.)

Example 145, Hydrogen gas is stored at 358 K in a 4.0 m ID, 5 cm thick spheti-
cal container made of Nickel. Molar concentration of hydrogen in Ni at the in-
ner surface is 0.09 kg mole/m’ and is equal to zero at the outer surface.
Determine the mass diffusion rate of hydrogen through the walls of the con-

tainer. c Co =0
Solytion. From Table 14.5, we have, for H-N; at 358 K: L h2

Dy raier = 12- 1072 m?/s
n=2m rp=205m T:=358K  Cuyi=009kg mole/m*
Cpp:= 0 kg mole/m® My, =2

Ni walt My KOS

' I.
We have, the molar diffusion rate for a spherical shell: |
2
N, = —-C—;’—_—%-z—-— kg mole/s
(T,_Z FIGURE Example 14.5 Diffusion
47Dy racret through a spherical shell
Le. N, = 1.113-10° ™ kg mole/s
Therefore, mass diffusion rate:
my = N, I MHZ
ie. m, = 2.226- 107" kg/s " (mass diffusion rate of hydrogen through Ni wall of spherical container.)

Exomple 14.6. Helium gas is stored at a pressure of 6 bar and 293 K in a 0.4 m ID, 3 mm thick spherical container made
of fused silica. Determine the rate of pressure drop due to diffusion. Given: D = 0.04 x 10°"? m?/s, and solubility of gas
at the solid surface on the inside is 18 x 10° kg/ (m>Pa).

Solution. Since the wall thickness is small as compared to the radius, we can approximate the shell as a flat plate.
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=610°Pa r:=02m L[=0003m T:=203K Ry := Bu J(kgK) i.e. Ry, = 2.079-10° [ /kgK)
p e~ 4

$:=18-10° kg/(m’Pa)  D,.:= 0.04-102 m?/s
pv
Ry T
Since pressure drop due to diffusion is very slow, temperature T can be considered as constant. Also, since the tank

is rigid, volume V can be considered as constant,
Therefore,

Mass of gas in the container: i =

dm _ V4
dr Ry T dr
But, dm/d7 must also be equal to the diffusion rate, i.e.
‘;—m = A-D,- @ {for a flat plate (membrane)...(b))
r
where, A = area of cross section, p,, = 0 at the outer surface
Therefore, equating Eqgs. a and b,
Vv dp _ ADw Py
R, T dr I

...(a}

ie. d_P = Rﬂe_Tﬂf_@ )
dr V-L

Now, for a sphere:

<= < =

and, =15

Now, Py = solubility x pressure

e, P = Sp
Then, substituting in Eq. ¢, we get:

gg = 1.315 x 10°° Pa/s {rate of pressure drop.)
T

Note: This is the injtial rate of pressure drop. With time, pressure inside the container will fall; then, the rate of
pressure drop will also decrease.

14.6 Equimolal Counter-diffusion in Gases

Chamber B Chamber € Consider a binary mixture of species B and C. ‘Equimolal counter-diffu-
>N, N4 sion” implies that in the diffusion process, each molecule of component B
- is replaced by each molecule of component C and vice-versa. Refer to
Py My Py A, Fig. 14.5, which shows two chambers B and C, both containing mixtures
—__+ X - of B and C, but at different concentrations, connected to each other by a
passage; component B diffuses from higher concentration to the lower
Pressure A concentration and equimolal counter-diffusion occurs between B and C
Pi=Py+ P, and each molecule of B is replaced by each molecule of C and vice-versa.

Total pressure, p, of the system remains constant, and, p, = p, + p..
Pot_PplX) Py Distillation columns are good examples for equimolal counter-diffu-
>< sion. Venting of a gas to, say, atmosphere, also involves equimolal coun-

Per D) Pyz ter-diffusion.

~ Distance From Fick’s law, we have molar diffusion rates of species B and C:

(See eqn. 14.20)

FIGURE 14.5 Equimclal counter-
d Ny=T2 o p A9 1o roess (14.44a)

diffusion in a binary gas mixture M, be? R,-T dx
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m A dp
and, N,=—%£ =-D, L kg mole/s
73 BT dx g (14.44b)
where, p, and p, are partial pressures of species B and C, respectively.
Note from the Fig. 14.5 that each of the components diffuses in the direction of its drop in concentration.

Now, from Dalton’s law, total pressure of the system is equal to the sum of the partial pressures of the
components of the mixture, i.e.

Po=py+p.
Differentiating w.r.t. x,
dn _dpy , dpe
dx  dx  dx
However, under steady state conditions, total pressure of the system is constant, i.e.

g o Zdpc
dx dx dx
Also, N, and N, are numerically equal, since both the species are diffusing in opposite directions but at a
constant rate, i.e.
Nb =-N, c

A dp

. e _p,.
“R,T dx " R,T dx
Substituting for dp./dx:

A dp,

ie. -

A dpy A dpy
—Dhe- = ==Ly —
R, T dx R, T dx
or, D, =D, =D. .(14.45)

Note the important fact from Eq. 14.45 that in equimolal counter-diffusion, the diffusion coef-ficient of com-
ponent B in component C is equal to the diffusion coefficient of component C in component B. Value of D in a
binary mixture is calculated using the empirical Eq. 14.22, as already described.

For constant D,., Eq. 14.44 may be integrated between any two planes, to give:

N=To - p A (Pyy —Pm)

"M,  R,T (n-x)
ie. N, = =t =p. AP mPh) o ngless (14.46)
M, R, T (x3-x1)

In Eq. 14.46, py, and py, are the partial pressures of component B at locations x; and x,, respectively.
Example 14.7. A distillation column containing a mixture of Benzene and Toluene is at 101 kN /m? pressure and tem-
perature = 100°C. The li%uid and vapour phase contain 30 mol% and 45 mol% of Benzene. At 100°C, the vapour pressure
of Toluene is 70 kN/m” and diffusivity is 5 x 107® m2/s. Work out the rate of interchange of Benzene and Toluene
between the liquid and vapour phases if resistance to mass transfer lies in a film 0.25 mm thick. Universal gas constant
= 8.314 k] /kg mole K. (M.U. Dec. 1998)
solution. This is the case of a distillation column, and equimolar counter-diffusion occurs in the column. Let subscripts:
t —» for Toluene and, b — for Benzene.

Data:
P = LOLI0° N/M?  Prs omuene = 7010 N/M? g 103= 03 Yy 1pp = 045 A:=1 m? {assumed)
T:=373K D:=510"° mi/s R, := 8314 J/kg mole K
Ax = 0.00025 m; (Note that Ax = (x, - x,), distance through which diffusion occurs)
Now, we have for Toluene, mass diffusion rate:

D-A-M, (P:I_Prz)
_DAM (Pu-Pe) Eq. (1446
"= R (ox) B (from Eq- (14.46))
And, molal flux:

N m _D_ tpuzpa) kg mole/(sm?)

A MA RT (x-x)
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[' | Now, p, = partial pressure of Toluene at x), i.e. in liquid

X2

b Vapour Phase:
P = (Pyap_totuened {1 = Yy _jig) ..By Ragult's law
Ax ie. Py = 49 x 10* N/m?®
And, p,; = partial pressure of Toluene at x,, i.e. in vapour
phase:
x, Y Pr2i= (Pro (1 = Yoy vap) ..By Dalton’s law
Liquid i.e. P2 = 5.555 x 10* N/m?
Therefore, molal flux for Toluene:
N __D (P —Pa) __D pn-po)
A R, T (x,—x) R, T Ax
: N, -
FIGURE Example 14.7 Equimolal counter- i€ _A_‘ = - 4.224 x 10°° kg mole/(sm?).

diffusion

Negative sign indicates that Toluene diffuses from x, to x;,
i.e. from vapour to liquid. Benzene will diffuse at the same rate but
in opposite direction. i.e. N, = —N,,.
Exomple 14.8. A tank contains a mixture of CO; and N,, in the mole proportions of 0.2 and 0.8 at 1 bar and 290 K. It is
connected by a duct of cross-sectional area 0.1 m® to another tank containing a mixture of CO, and N, in the molal
proportions of 0.8 and 0.2. The duct is 0.5 m long. Determine the diffusion rates of CO, and N, in kg/s. Given: D = 0.16
x 107t m?/s for CO,/N,...at 293 K...from tables. (M.U. Dec. 1998)
Sofution. This is the case of equimolar counter-diffusion between CO, and N,.
Data:

P :=100-10°Pa  plg, =02:10°Pa  ply =08x10°Pa  p2q :=08-10° Pa
P2y, =02:10°Pa  T:=290K Ax:=05m A:=01m’ D:=1610°m%/s
R, := 8314 ]/ (kg mole K}

For equimolar counter-diffusion, we have:
Molar flow rate, from Eq. 14.46:

N, = My A (Po—Puw)

0.1 m" ...cross-sectional area M, DE_TH kg mole/s ~(14.46)
For Nitrogen, in this case, we can write:
Chamber B Chamber C A (ply -p2y)
CO,0.2)+ —» 4— CO,(08)+ Nitrogen = D ﬁ-——zz-;—
N,(0.8) N, Nco,| N,(0.2) -
P . i€ Nuyjpogen = 7.963 x 107" kg molefs  (molar flow rate of N,)
] 0.5m R and, mass flow rate of Nitrogen: = Ny X (Mol wt. of Nitro-
—» x gen)
ie. Nyipogen'28 = 2.23-10°° kgfs (mass flow rate of N,.)
Pressure A P = Plegt 0y For CO,, we can write;
2 2

Neo, =D A (Pl - P20,)

1 : .
Pln, P2co, Ro-T Ax
Pleo P24 ie N, = -7.963 x 1078 kg mole/s  (molar flow rate of CO,.)
2 2

- Note: Molar flow rate of CO, is equal to that of Ny, but in opposite
Distance direction, as indicated by negative sign.

And, mass flow rate of CO;: = N, - (Mol. wt. of COy)

FIGURE Example 14.8  Eguimolal counter-
diffusion in a binary gas mixture ie. Neo 44 = —3.504-10°° kg/s (mass flow rate of CO,.)

Example 14.9. A spherical ball of ice, 1 cm diameter is suspended in still dry air at 1.013 bar. Calculate the initial rate of
evaporation at the surface.
Take D = 0.256 x 107* m’/s. At 0 deg.C, saturated vapour pressure = 0.0061 bar.
Solution,
Data: T:=273K D:=025-10" m*/s P :=10310°P1 £ :=05x107m

t
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UYIYAETIIIY RV b a

vz

rp=-=m R, =814 ]/kg mole K

fo = o0
At 0 deg. Cp,,; := 0.006-10° N.m? (vapour pressure of water vapour) 2
Therefore,  p,y = p,-py
ie. P = 1.007 - 10° N/m? (partial pressure of air)
At r = infinity: p,, := 0 (vapour pressure of water vapour)
Therefore, Paz = Pt~ Po2
ie P = 1.013.10° N/m? (partial pressure of air)
For equimolar counter-diffusion in spherical coordinates
N -D 4
—/{‘— = Ru T dpb kg mole/s m? (molar flux)
r{=5mm
ie Nb - -D dPa
4.7.9° Ru T dx FIGURE Example 14.9
Separating the variables and lntegraﬁng’ Equimolal counter-diffusion from
_Nb R T a sphere to surroundings
dp,, 7 dr
L\r
. -N,R,-T{1 1
ie. - =k
(pu'l pUZ) 47D [Ti r ]
But, o =ccand, p, =0
Therefore,
47D p,
Nwaber = Tv]
ie. N ater = 432310 kg.mole/s (initial rate of evaporation of water)

We can also write:

Nparer 18 = 7.781-107° kg /s. (since mol. wt. of water vap. = 18)

Exumple 14.30. A pipe carrying ammeonia at 1 atm. is maintained at that
pressure by venting ammonia to atmosphere through a 5 mm ID, 5 m
long tube. Assuming both ammonia and atmospheric air to be at 25
deg.C, determine: (a) mass flow rate of ammonia diffusing into the at-
mosphere, and (b) mass flow rate of air that diffuses into the pipe line.
Take the diffusion coefficient of ammeonia in air (or, air in ammonia) as:
D =026 x10* m%/s.

Solution. This is a case of equimolal counter-diffusion, where two large
reservoirs containing mixture of ideal gases at different concentrations,
are connected to each other by a pipe.

Data:

Py, = 1013-10° Pa (partial pressure of ammonia at section-1)

Py, = 0Pa (partial pressure of ammonia at section-2,

ie. at atmosphere)

x¥;=0m %:=5m d:=0005m L:=5m T:=298K
D:=026x10%m?/s R, = 8314 ]/kg moleK

2
A=z d ie. A=196310" m? (cross-sectional area of vent pipe)

Air at 1 atm, 25°C

NH, A
X2
h
5 mm diameter
L=5m
X4 4
&“_-* NH, at 1 atm, 25°C ?

FIGURE Exomple 14.10 Equimolal
counter-diffusion of NH; and Air

Note that the pressure of ammonia at the bottom of vent pipe (x = 0} is 1 atm. and is equal to zero at the top (x = L}

For equi-molal diffusion, we have:

™y, A 4 bZ)

- (Pb:
Nyi=—=D'—— kg mole/s. ...(14.46
5T M, RT (r,—z,) &mole/ (14.46)
With the notations used above, we get:
Ny, =D A_ P~ Pre) kg mole/s.

R,-T (r; - x,)
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ie Ny, = 4175- 107" kg mole/s.

Therefore, mass diffusion rate of ammonia into air:

My, =17 (moiecular wt. of NH,)
and, My, = Nogy - Mo,
ie. Wy, = 7.097 1071 kg/s (mass diffusion rate of ammonia inte atmosphere.}

And, mass diffusion rate of air into ammonia:
For equimelal diffusion, we have the molal diffusion rate of ammonia into air is equal to the molal diffusion rate of
air into ammonia.

ie. Nay = Ny, = (41751073 kg mole/s
Therefore, mass diffusion rate of air intoc ammonia:
M, =29 {Molecular weight of air)
and, My = Noio My,
ie. My, = -1.211-107" kgfs (mass diffusion rate of air into ammonia.}

Note: negative sign simply indicates that mass diffusion of air is in the opposite direction, ie. from atmosphere to
ammonia in the pipe.

14.7 Steady State Uni-directional Diffusion—Diffusion of Water Vapour
through Air

Let us consider a binary gas mixture wherein one gas diffuses through another gas which remains as a stagnant
layer; familiar examples of uni-directionat diffusion through a stagnant gas layer are: absorption, humidification

and, the diffusion of water vapour through a layer of
air, when evaporation of water occurs, say in a well or
a test tube.

Consider the evaporation of water contained in a
well and the subsequent diffusion of this water vapour
through the stagnant gas layer above the water. See
Fig. 14.6.

Assumptions:
Pa (i) steady state and isothermal conditions exist
(ii) total pressure is constant
(iii) both air and water vapour behave like perfect
F—_—H gases
Pt=Pw* Pa (iv) air has negligible solubility in waer, and
(v} air movement at the top is very slow, i.e. move-
ment of air is just sufficient to carry away the
FIGURE 14.6 Diffusion of water vopour through air evaporated water, but not large enough to
cause any change in the concentration profile of
air.

Water which evaporates at surface 1 (see the Fig, 14.6) diffuses through air standing above it; and, in steady
state, this upward movement of water vapour must be balanced by a downward diffusion of air so that concen-
tration at any location x, remains a constant.

Downward diffusion of air:

a

_p.AM. dp,
R, T dx
Since air is not soluble in water, this downward movement of air will cause a bulk mass movement upward,

with a velocity just large enough to compensate for the diffusion of air downward.
Bulk mass transfer of air is equal to:

(14.47)

m, = —-ppAa=—p,; RM~RT Au -.(14.48)
"

where, u = bulk velocity upward
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Equating Eqs. 14.47 and 14.48, we get:

pAMs s, M,
R, T dx R, T
ie. u= 2.4 ..(14.49)
P. dx

Now, the total mass transfer of water is equal to the upward mass diffusion of water plus water vapours
carried upward by bulk movement of air.

ie.
my, =-D.AMuw By oo, . {14.50)
ot R, T dx
ie. My = —D‘Ml‘-’--% + Po My A D dpy ...(14.51), using Eq. (14.49)
. R, T dx R, T p, dx

In the above equations, p, = partial pressure of air and, p,, = partial pressure of water vapour. Now, from
Dalton’s law of partial pressures, we have, the total pressure:

Py =Pt P
dpy _ dp, | dpy
Therefore, = = LE 4 1
erefore x m i
But, the total pressure of the system is constant; so,
an _ g
dx
dpy _ —dpy
Therefore, e o e
erefore pm »

Then, substituting in Eq. 14.51,

™m. =—D-—. —_— 4--——_—. —_

b R, T dx R, T p, dx
ie. My =_D.%.§£@_. 1+@_
ot R, T dx Pz

ie. My, = _D- A-My E@ Pat pw}

R, T dx Pa

e, my  =-p M APy | P ] {1452)

w T R dx \ PP
Eq. 14.52 is known as ‘Stefan’s law’ for an ideal gas diffusing through another, stationary, ideal gas compo-
nent in a binary gas mixture.
Iniegrating Stefan’s equation between planes x; and x,,

x _n. P

o[ = 22t [,
o Jy, R, T P (Pf - Pw)

D-A P2 1

ie. Fii) . - = 7‘Mw' I —d

ie Wit (x; — x4} R, T Pi bt (P — Pt) Pu

. DA Pu2 — P

1e. mu'tm '(IZ - xl) = —Ru T ‘Mw.pr. In(ﬁ;;
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Pressure

pt=pw+p3

il Therefore,
P /x DA M
= _w—Ptln p‘;z ki (1453
Puz mwlm R, T (x3-%) ( ] ~kg/s ( )

Pa1
Now, let us define ‘Log Mean Partial pressure of Air (LMPA)" as:

X Distance Xz Pz - Pat
—_ a. a
FIGURE 14.7 Uni-directional LMPA = ===
diffusion of woter vapour in a station- III(BQJ
ary gas [i.e. air} Pal }
ie. In Paz = Paz — Pat
Ea1 LMPA
Then, Eq. 14.53 can be written as:
m. = D-A . My -p1 .(pa2 —Pa1)
“o = R,T (x,-1%) LMPA
ie. m, =28 Mup (Pur=Pug) 1o .{14.54)
= R, T (x5-x) LMPA

Note that, in Eq. 14.54, instead of LMPA we can use arithmetic mean pressure, [i.e. (p,; + pp)/2], if the
partial pressure of water vapour does not change much as compared to the total pressure of the mixture.

Let the partial pressure of water be p,, at any plane x; then, integrating the Stefan’s equation between planes
x; and x, we get:

D-A Pt — Pw
M, - = — M, . ]_r‘ LIS
w85 = g Mep {pt_Ple

t w

T
ie. Pu = Pr— (s — Pun)-exp [ ";"4 {x - n)é"j] (14.55)

Eq. 14.55 gives the variation of partial pressure of water vapour with distance x along the tube.
And, for the stagnant gas, i.e. air:

Po =Pt— Pu

m R, T
ie. Pa = (P1 = Pun)-exp [pf ';\;w (X —x) D"_A ] ~(14.56)
Variation of p,, and p, with x, are shown graphically in Fig. 14.7:
Example 14,11,  Calculate the hourly loss of water from a well 6 m deep and cross-sectional area 5 m?. Temperature is 30
deg.C and pressure is 1.013 bar. Given: D = (1256 cm?/s. Also, saturated pressure of water at 30°C = 0.042 bar.
Solytion. This is a case of uni-directional diffusion of water vapour through a column of air. Therefore, Eq. 14.53 is
applicable. Refer Fig. 14.6.
Data:
P,=0042x10°Pa P, =1013x10°Pa x,:=0m 1=6m A=5m*® T:=3+273K
D:=0256x 10" m?/s R, :=8314]/kg moleK M, = 18
Then, from Eq. 14.53, we have:
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DA Mep '1“[&;.] {14.53)

T RT (m-1) \Pa
where, p,, and p,, are partial pressures of non-diffusing gas, i.e. air.
Now, Pa1 = Pt — Pul
ie. Pa =971 % 10* Pa (partial pressure of air at bottom of well)
and, Py =p =0
ie. P2 = 1013 x 10° Pa {partial pressure of air at fop of well)
Therefore,

Diffusion rate of water vapour is given by:

YORT (5 -x) Pa
ie. my = 6539 x 107 kg/s
and, m,,-3600 = 2.354 x 10 kg/hr {(hourly loss of water.)

Exomple 14.12.  In a Stefan tube experitent with carbon tetrachloride (CCl,), following data are noted: Diameter of tube
= 1 cm. Length of tube above liquid surface = 12 cm. Temperature maintained = 0°C. Pressure maintained = 76 cmHg.
Vapour pressure of CCl, at 0°C = 33 mmHg. Evaporation of CCl, = 0.037 g. Time of evaporation = 10 h. Estimate the
diffusion coefficient of CCl, into air.
Solufien. Stefan tube experiment is conducted to determine the diffusion coefficient of diffusing gas in a column of non-
diffusing gas, i.e. CCl, in air, in this case.
Data:
d=00lm Ax:=012m T=273K p:=760mmHg p,:=33mmHg P, =p —p, mmHg
ie. py =727 mmHg p,=p-0mmHgie p,=760 mmHg R, :=8314 J/kg moleK
0.037 x10*
My = —————
10 x 3600
M, := 154 (mol. wt. of CCly)

kg/s ie m, =1.028 x 107° kg/s (evap. rate of CCl))  p = 1.013 % 10° Pa {total pressure)

2
A= z-d m?
4
Le. A=7854x10°m (cross-sectional area of tube)

Now, we have for uni-directional gas diffusion:

D.A.Mw.p.ln[ﬂl]

Par
T = R, T-Ax
Therefore,
D:= MR TAX m?/s (diffusivity of CCly in air)
AM, -p~ln[&3—}
Pa
ie. D = 5.147 x 10° m’fs (diffusivity of CCly in air.)

14.8 Steady-state Diffusion in Liquids
Now, let us study steady state equimolal counter-diffusion and uni-directional diffusion in a binary mixture of
liquids. While dealing with liquids, we generally write the equations in terms of molar concentrations.

14.8.1 Steady-state Equimolal Counter-diffusion in Liquids

Writing in terms of molar concentrations, the molar flux of component B is given by:

dC
Jy=-D-—2 . (1457)
dx
Integrating between x = x; and x = x, (with C, varying from Cy; to Cyp):
L =p.Cn=Cn .(14.58)
X9 — X1
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where,
Gy, Cyy = molal concentrations at x, and x,, in kg mole/m?,
D = mass diffusivity for liquid-to-liquid in binary liquid mixture, m®/s.
Jp = mass flux of species B, kg mole/ {m%), and
x = distance, m.
In case of liquids, mole fraction is defined as:

= G = mole fraction of component i, where i = B or C

C
and, G, + C= C = total molal concentration of the mixture, kg mole/m?
Then, in terms of mole fraction, Eq. 14.58 is expressed as:

J,=D-C i;!"% kg mole/(m’s). .(14.59)
27 M

14.8.2 Steady-state Uni-directional Diffusion in Liquids

This analysis is similar to that done in case of gases. However, now, Eq. 14.54 is written as a molal flux and,
instead of partial pressures used in case of gases, now molal concentrations are used for liquids.
Eq. 14.54 for gases may be re-written as:

Swog _ D o Pui—Pun)
A-M, R, T (xp-x) LMPA
In an analogous manrer, for liquids, we write: (liquid B diffusing in stationary liquid C)

kg mole/(m?s)

I, =D- € _Sn=Cp_p_C CuzCa kg mole/{m’) (14.60)
(p-x) Cop (xp-x)  Copn
where, C_ , = logarithmic mean concentration of component C, defined as:
sla-Ca {14.61)

Com
‘ “ In (EJ
Crl

and, note that C = C, + C.and C, - Cy,; = C, - C,
In terms of mole fractions, Egs. 14.60 and 14.61 can be written as:

-X - X
J, = D- C Xo-Xg_p_ C  Xn-Xp kg mole/{m’s) (14.62)
(2-x) Xem (xa-x1) Xy
where, X_ |, = logarithmic mean mole fraction of compenent C, defined as:
-X
X, 1= Koo =X .{14.63)
In [ XCZ }
Xc]

In the above equations,
C = total molal concentration of mixture, kg mole/ m?,
X; = C;/C = mole fraction
D = mass diffusivity , m?/s,
J, = mass flux of species B, kg mole/(m?s),
x = distance, m.

14.9 Transient Mass Diffusion in Semi-infinite, Stationary Medium

Now, consider a semi-infinite medium in which the component B is initially at a uniform concentration Cy;
throughout. Then, suddenly the surface at x = 0 is exposed to a concentration of B equal to C,, and maintained at
that value for all 7. We are interested to know the value of C, at a given distance x from the surface at a given
time T.
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We have already derived the general differential eqn. for mass diffusion, viz.

V=G, = (1/D).(aC, /a1 o (1429
Then, transient, uni-directional mass diffusion equation can be written as:
dc, d*C,
2 o p.
I = .{14.64)

This equation has to be solved with the following boundary conditions:
(i) C,=Cyatr=0forallx
(i) C,=Cpatx=0forall r
(iii) C,=Cyatx = oo, forall 7
Note immediately that Eq. 14.64 and the set of boundary conditions are similar to the case of transient one-
dimensional heat conduction encountered in Chapter 7. By analogy, now, we can write the solution for Eq. 14.64
also, looking at the solution in the case of heat conduction, i.e.

T(x, - T, x
2 zerf .(7.29
T-T [2- a'r} (7.29)

where T; = initial uniform temp. and T, = temp. to which the suddenly exposed and then maintained for all
times,
So, we have for solution of Eq. 14.64:

Cb_cbs _ Cbs'C!: =erf[

=erf ..{14.
Cbi - Cbs Cbs - Cm ] el' (u) ( 65)

X
2D
X

2. /D

Mass flow rate through the boundary is given by:

where, u =

m 4G DG -G e ..(14.66)
A dx JEDT
m — DACy ~Cie)
and, —”) A e .24 .(14.67)
[A o0 JrzD-r (

This solution is applicable, typically, in case of solid state diffusion in case-hardening of mild steel in a
carburising atmosphere.

Another quantity of interest in solid diffusion process is the ‘penetration depth’ {8 4g), defined as the loca-
tion x where the tangent to the concentration profile at the surface (x = 0) intercepts the C;, = Cy, line (See Fig.14.8).

Then, penetration depth is obtained as:

Clrs - Cbi Cbs - Cbi

Sase = 17 T T o)
l:_ (HH ‘/x- Dr

ie. Sae = ‘/:‘:-D‘ T ...(14.68)

fxample 14.13. A mild steel piece has uniform, initial carbon concentration of 0.2 % by mass. It is exposed to a
carburising atmosphere in a furnace, where the surface concentration is maintained at 1.3 %. Determine how long the
piece must be ke?t in the furnace for the concentration of carbon at a location 0.4 mm below the surface to reach 1 %.
Take D = 5 x 107" m?/s.

Sofution. This problem is of transient mass diffusion in a semi-infinite medium.

(differentiating Eq. 14.65)

Data:
. Cp; = 0.002 (initial concentration of carbon)
G = 0.013 (surface concentration of carbon)
Cp =001 (desired concentration at x = 0.4 )
x=04%x10"m (depth of penetration)
D:=5x 10" m%/s {diffusion coefficient)

MASS TRANSFER




Semi-infinite medium

- X

LO

8dii‘f

Cp(X. 7) Tangent to concentration gradient at x = 0

FIGURE 14.8 Transient diffusion in a semi-infinite medium-peneiration depth

Then, for diffusion in a semi-infinite medium, we have:
-
Cu =Gy = erf £
Cos = Cyy 2. /DT

. Cou =G, Wy — Wy x

e = =erf

e Co —Cpi Wy ~wy; 2:yD-r
Now, from data:

C”S__(‘i. = 0.273

bs
Then, from table of error functions, we read
erf (0.247) = 0.273

bi

Then, from Eq. A:

x
= (.247
2-,/D-r
2
2-00.247

and, =

D
ie. r:= 1.311-10° s

ie. 7:=0364 h

Alternatively:

..{14.65)

(time required)
(time required.)

If we do not have the table of error functions, still the problem can be easily solved with the solve block of Mathcad;

Mathcad has built-in-error functions available.

We start with a guess value for rand write the constraint under ‘Given’, then, command 'Find’ gives the value of 7,

as shown below:

7:= 100 s
Given
-G | gl
G — Gy 2. JD-r
Find (£) = 1.315-10°
Le. +=1315s
ie. - 0365h

3600

Note: Values of 1 obtained are practically the same, by both the methods.
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14.10 Transient Mass Diffusion in Common Geometries

Transient mass diffusion analysis is important in hardening of mild steel by carburising, where the steel compo-
nent is packed in a carbonaceous material and kept in a furnace at high temperature for a desired length of time.
We have worked out an example of this type already. Transient analysis is also required in gem industry (to get
desired colour for valuable stones), in ‘doping’ of n-or p-type of semiconductor materials, in drying of coal,
timber, food, textiles, etc.

Transient mass diffusion and transient heat conduction are analogous if the solution is dilute. One-dimen-
sional transient heat conduction in plane walls, cylinders and spheres was discussed in Chapter 7 and Tabular
‘and Chart solutions were presented. These solutions are applicable to transient mass diffusion problems, too, if:

(i) the diffusion coefficient (D) is constant {corresponding to constant thermal diffusivity, in transient heat

conduction)

(ii) there are no homogeneous reactions occurring (corresponding to no heat generation), and

(iii) initial concentration of species B is constant throughout the medium (corresponding to uniform initial
temperature).

Quantities which are analogous in heat and mass transfer are tabulated in Table 14.8.

Then, for example, for a plane wall, we have the temperature distribution given by:

Plane wall: @x, 1) = M—Tﬂ =4 -e_’lzl‘Fo -CO5 (M) (Fo > 0.2 ..{7.24a))

T,-T, L

Now, the corresponding equation can be written for transient mass diffusion in a plane wall and the values
of constants A, and 4, (as a function of B;) can be taken from the Table 7.1 given in Chapter 7. Similarly the chart
solutions given by Heisler's charts can be applied for transient, one-dimensional mass diffusion problems.

14.11 Mass Transfer Coefficient

Mass transfer coefficient is defined in a manner analogous to convective heat transfer coefficient.

Remember that convective heat transfer coefficient ‘" is obtained from Newton's law:

, Q=hAAT, W .(14.69)

(a) Steady state diffusion of a fluid across a solid layer of thickness (x, - x3):

Mass diffusion rate for diffusion through a solid layer is given by: (see Eq. 14.31)

_ D-A{Cpn - Ci)
X2~ X1

m, kg/s ...(14.70)

Writing this in a manner analogous to Eq. 14.6%:

D-A(C, -C
= ___(__bl__fﬁ =l A (Cy — Cp2)
Iz—xl

My
Therefore, h,,, the mass transfer coefficient based on concentration differences, can be written as:

TABLE 14.8 Analogous quantities in heat conduction and mass diffusion

T C v porw
a Dye
Tix,0)-T, Woix, 1) —W
g(x, f): (T )T a emass - bir -)w ba
i~ ta bi ba
¢= x ‘ _ x
2-Ja-r moss 2r;;Dw-r
hL Piress L
== g = lmem
B, P . D,
. DT
Fo = a—zr' FOmges = Tz
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=D s (1471

(% - x1)
Note the units of mass transfer coefficient: m/s.
(b) Steady state equimolal counter-diffusion:
In this case, from Eq. 14.46, we can write the mass diffusion rate as:

me

m,=D-A. ﬂfl__(r'bl = Py}

Ru -T (12 - xl)
. D M,
Le. M, = ———————— s . A -
b (xg—7)) R, T P — Pra)
M
ie. Py = by ——— A (b - pya) ke /s -{14.72)
R, T
Now, if we define a mass transfer coefficient M,y based on partial pressure differences, we rewrite Eq. 14.72
as:
M
My = e =t A (i = Pia) = hpe A+ iy — i)
R, T
And, it is clear that;
hmr = hmc ) _%7
' R, T
h
ie. h,, = M {1473

ie. mass transfer coefficient based on pressure difference is obtained by simply dividing the mass transfer coef-
ficient based on concentration differences by (R.T) where R = particular gas constant, and, T = temperature in
Kelvin. .

(c) Diffusion of water vapour through a layer of stagnant air:
In this case, we have seen that the mass diffusion rate of water vapour is given by:

my= DA Mope p {p“z .{14.53)
Ry T (x2-x) Pa1 ‘
DA M, - -
e S A w1, (Pt Pw?.] = Ny A Py ~ Pu) ..say
RyT (xp=x1)  \Pr= P
Then, for this case, the mass transfer coefficient based on pressure difference can be written as:
By = D-py My Aln[p‘ —szJ (14.74)
(x2 =210 (Puwt = Pu2) R'T  \ pr =P

And, for this case, the mass transfer coefficient based on concentration difference would be:

Hine = My (R-T) = D vln(p‘ —sz] (14.75)
(xz - xl)'(pwl ~ P2} Pt — Pun

14.12 Convective Mass Transfer
So far, we considered molecular diffusion of a fluid through a solid, or between two fluids. In these cases, the
bulk velocities of the species were insignificant and only the diffusion velocities were of significance.

However, when the bulk velocities of species diffusing are significant, we have the convective mass transfer.
This is analogous to convective heat transfer, just as the molecular diffusion is analogous to conduction heat
transfer.
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Convective mass transfer involves the transportation of material across the boundary. Again, just as in the
case of convective heat transfer, convective mass transfer is of two types: (a} ‘Free (or natural) convective mass
transfer, and (b) ‘Forced’ convective mass transfer. In free convective mass transfer, buoyancy forces cause the
circulation due to density differences, whereas in forced convective mass transfer, an external agency such as a
fan or pump causes the circulation. Further, forced convective mass transfer may be of laminar or turbulent
types, depending on the Reynolds number.

Recall that for convective mass transfer, we have the Newton's equation for heat flux:

£ _par
A
Similarly, the equation for mass flux in the case of convective mass transfer is:
m
j’- = h, AC, (14.76)

where, h,, = convective mass transfer coefficient, and AC,, = concentration difference of species B.

Just as in the case of convective heat transfer, analytical treaiment of convective mass transfer is compli-
cated, because of the effects of flow velocity, surface geometry, flow regime, flow type (i.e. external or internal
flow), composition and variation of fluid properties. Therefore, generally, empirical relations, obtained as a result
of experimentation, are resorted to.

For flow over a flat plate, we saw earlier that a velocity boundary layer develops; similarly, a concentration
boundary layer also develops and the equations for conservation of momentum, energy and concentration may
be written as follows:

Momentum: w(du/ox) + v.Qu/dy) = v.0u/9H
Energy : u{dT/9x) + v.(0T/dy) = . (ai"r/ayz) , and
Concentration : uddC/ax) + v{oC/3y) = D.(3% C/&yz),

where, C = concentration of component diffusing throug2h the boundary layer.

With reference to the velocity, temperature and concentration boundary layers, we have the following non-
dimensional numbers appearing in the empirical correlations:
Prandtl number {Pr) Pris defined as: Pr = v/ @, and is the connecting link between the velocity and temperature
profiles. Pr = 1 indicates that these profiles are identical.
Schmidt number (Sc} Sc is defined as: Sc = v/D, and is the connecting link between the velocity and concentra-
tion profiles. Sc = 1 indicates that these profiles are identical.
Lewis number {(Le) Le is defined as: Le = /D, and is the connecting link between the temperature and concen-
tration profiles. Le = 1 indicates that these profiles are identical.

All the three boundary layers will coincide if Pr = 5¢ = Le.

Noting that the governing equations for momentum, energy and mass transfer are similar, it is reasonable to
guess that the empirical correlations for mass transfer coefficient will also be similar to the correlations for the
convective heat transfer, studied earlier. For heat transfer coefficient, we had the general correlation of the type:

Nu = %—Iﬁ =f (Re, Pr)

In an analogous mannet, for mass transfer coefficient in convective mass transfer, we have:
hy,-L
D

where, Sh is the ‘Sherwood number’, which represents a non-dimensional mass transfer coefficient.

Table 14.9 gives the Sherwood number relations for a few convective mass lransfer situations, written by
analogy with Nusselt number relations for similar convective heat transfer situations.

Note that in Table 14.9, for mass transfer, Grashoff number is defined as follows:

Sh = = f(Re, 5¢) ..(14.77)

/AP] 3

gl ==|L
or = 8P -p) L’ L )
- 2 - 2
oV 1%
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1. Forced convection over a flat phté:
Local heat transfer coefficient: Local mass transfer coefficient:
Nu, = 0332 [Re, -Pr*%® _jaminar flow (Re < 5 x 10%) Sh, = ""B X <0332 /R, - S
Nu, = 0.0298-Re,°%. Pr®3% _ turbulent flow (Re > 5 x 10%) Sh, = ""b‘ X 0.0298- Re 8. 503
Average heat transfer coefficient: Average mass transfer coefficient:
1
Nu, = 0.664.- JRe, -Pr®** _ laminar flow Sh, = -l _ o 664 Re’5.5c%, Sc> 05
1
Nu, = 0.037-Re ”8. P33 turbulent flow Sh, = % = 0.037-Re °®. Sc?, 8¢ > 0.5
For mixed b.l. conditions with As, = 5 x 10°; For mixed b.. conditions with Ae, = 5 x 10%
Nu, = (0.037. Re,%® — g70). PO 8h, = (0.037- Ae °® — 870} S
2. Fully developed flow in smooth, circular pipes:
Laminar flow {Re < 2300): Sh =366 ..(lor uniform wall mass concen-
Nu = 3.66 ..for uniformm wall temperature tration), and Sh = 4.36 for constant wall mass
Nu =436 . jor uniform wall heat flux flux. Turbulent flow (2000<Re <35000):
Turbulent flow {Re > 10000): Gilliand’s relation:
Nu = 0.023-Re®®.Pr% 07 < Pr< 180 Sh=0.023- Re"®. 5c%%. 06 < Sc < 25
3. Natural convection over surfaces:
(a) Vertical plate:
1 1
Nu = 0.59-(Gr-Pr)* 10°% < Gr-Pr < 10° Sh = 059 (Gr-8c)* 10° < Gr-Se < 10°
1 1
Nu=0.1-{Gr Pr® 10° < Gr Pr< 10" Sh=0.1-{Gr-5¢)° 10° < Gr-Sc < 10"
(b} Upper surface of horizontal plate, Fluid near the surface is light,
(surface is hot, T.> T,): (ps < pg)
1 1
Nu=0.54-(Gr-Pr}* 10% < Gr-Pr< 107 Sh=054.(Gr-Sc)* 10* < Gr-Pr< 107
1 1
Nu=0.15(Gr-Pr}3 107 < Gr Pr< 10" Sh=0.15-(Gr-Sc)* 107 < Gr-Pr< 10"
(c) Lower surface of horizontal plate, Fiuid near the surface is light,
(surface is hot, T, > T,): (ps < pak
i 1
Nu = 0.27-(Gr-Pr)* 10° < Gr- Pr< 10" Sh=0.27-(Gr-8¢)* 10° < Gr-Sc < 10"
4. For natural convection through a tube:
Steinberger and Treybol relation for mass transfer is given by:
Sh = 2 + 0.57-(Gr- Sc)%# .for Gr-Sc < 10°
and, 8h =2 + 0.025-(Gr- §)*3. 502 .dor Gr-S¢ > 108

14.13 Reynolds and Colburn Analogies for Mass Transfer

Reynolds and Colburn analogies for heat transfer can be extended to the case of mass transfer, to get a relation
between the mass transfer coefficient and the friction factor. Reynolds analogy for heat transfer in a of pipe flow
is written as:

c
Nu h Y .(14.78)

= §5f = =
Re-Pr pC, V2
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Similarly, for mass transfer, we write:

Sh By
— tm m
Re-5¢ Vv
where, 5t =k, /V is the Stanton number for mass transfer.
Remember that Reynolds analogy is valid only when Pr = 5¢c = 1.
When Pr (or, 5¢) is different from unity, we have the Colburn analogy:
2

C
-
=3 {14.79)

2 ¢
ju=S5t-(Pr)? = Tf (0.5 < Pr < 50..for heat transfer..(14.80))

2 ¢
and, jm = Sty (56)3 = —z—f—- (0.6 < Sc < 3000...for mass fransfer..{14.81))

where, j, is the Colburn factor for mass transfer.
Relations for Cy(= friction factor) are already given in Chapter on Forced Convection.
From Eqs. 14.80 and 14.81, we can write:

2
St [E_C_)s
St,, Pr

2 2
. h Sc a3
ie C, =p-C,|= ..(14.82
[ %) -re(3) (1482
Now, non-dimensional number {a/D) = Le is known as ‘Lewis number’.
Therefore, we have:
h 2
Z = p-CP- Le3 ...(14.83)

Above relation is useful in cases of simultaneous heat and mass transfer.

Air-water vapour mixtures are of special interest in air conditioning applications. For air-water vapour
mixtures, Le = 0.872 and Le?3 is nearly equal to unity. Therefore, for air-water vapour mixtures, the relation
between heat and mass transfer coefficients is conveniently expressed as:

h=p-Cyhy {for air—water vapour mixture...(14.84))

Eq. 14.84 is known as Lewis relation and is normally used in air-conditioning applications.

Note: It should be remembered that the analogy between convection heat and mass transfer is valid only for low
mass flux conditions.

Example 14.14.  Air at a temperature of 20°C, and RH of 40% flows over a water surface at a velocity of 1.5 m/s. Length
parallel to flow is 18 cm. Average surface temperature is 16°C. Estimate the amount of water evaporated per hr/m?2 of
surface area. Partial pressure of water vapour-at 20°C and 40% RH is 0.011 bar and at 16°C and saturated, the vapour
pressure is 0.017 bar. Viscosity and density of air are: 18.38 x 10" kg/ms and 1.22 kg/ m?, respectively. Assume D = 0.256
em’/s.

Solvtion. See Fig. Ex. 14.14.

Water surface, 16°C

Air, 20°C, 40% RH,
u=15mgs ———— P
—p

L=0.18m

FIGURE Exomple 14.14 Convective mass transfer from surface of water
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Data:

w=15m/s L:=018m  u:=1838-10"kg/(ms) p:=12kg/m® vi= £ je v=1507.10" m?/s
P

D:=0256x10"m’/s R,:=8314]/kgmole K Ry, = % ie Ry =461.889}/kgk  T;:=16+ 273K

T,:=20+4273K  A=1m’ p,:=0017-10°Pa  pg, = 0011-10° Pa
Reynolds number:

Re = M—L—
Vv
ie. Re = 1.792 x 10t {Less than 5 x 10°...s0, laminar)

Mass transfer coefficient;
For laminar flow over a surface, we have:

B L

Sh = == 0.664-Re®. 0% (Sherwood number)
v
Now, Sci= —
" D
ie. 5c = 0.588
Therefore,
Sh = 0.664 - Re®*. 53
ie Sh = 74.623 (Sherwood number)
Sh-D
and, k. = IT m/s {mass transfer coefficient based on concentration)
ie. h,. = 0011 m/s
Concentrations (i.e. densities):
Cwl = 772‘”1
. RHIO'Tl
Le. Cuy = 0.013 kg/m? (concentration (density) at temperature T))
and, Cw, = FPar
Ryo'T:
ie. Coe = 8128 x 107 kg/m’ (concentration (density} at temperature T,)

Therefore, mass diffusion of water is given by:
My = hmc‘A'(Cwl - Cwi)
ie. my = 4.89 % 107° kg/s per m” area
ie. m,, = 3600 = 0.176 kg/hr per m>.
Example 14.35.  Air at a temperature of 25°C, and RH of 20% flows through a pipe of 20 mum ID with a velocity of 5 m/
s. The inside surface of the tube is constantly wetted with water such that a thin water film is maintained on the surface.
Determine the amount of water evaporated per m? of surface area.
Given: v=157 x 10% m?/s, 5c = 0.6, and D = 0.26 x 10* m?/s.
Solution. This is a case of convective mass transfer.
Data:
g=50m/s d=002m vi=157-10°mi/s
Pant = 0.231 kg/m? (denstty of water vapour at saturation at 25 deg.C)
Therefore, density of vapour in free stream at 25% RH:
Piree stream = 0.25 p sat
ie. Piree_stream = 0.058 kg/m® {density of water vapour at free stream condifions)
D:=026-10"m’/s Sc=06 A:=1m?
Reynolds number:

Re - wd (Reynolds number)
v

ie. Re = 6.369-10° > 2300 (therefore, turbulent flow)
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Then, Sherwood number relation is:
Sk = 0.023- Re®®. 504

ie. Sh = 27.873
But, sh = Mot
where, h,,, = mass transfer coefficient based on concentration (i.e. density) difference.
Therefore,
Sh-D
hmc = _d"_
ie h,. = 0.036 m/s

Then, mass evaporaion rate:

m:= hmc' A (Psat - pfree_stream) kg/(smz)
ie. m= 6278 x 107> kg/ (smz) (mass evaporation rate per m surface area.)

Note: One sq. m of surface area of the pipe is equivalent to a length of: Ld = 15.915 metres.
-

i.e. Mass evaporation rate per metre length of pipe is given by:
m

15.915

Example 14.16. In an experiment, when atmospheric air at T, = 30 deg.C was blown past a wet bulb thermometer, the

wet bulb reading obtained was T, = 20°C. What is the value of concentration of water vapour C, in the free stream?

Also, determine the relative humidity (RH) of the free stream. (Note: RH is equal to the ratio of concentration C, of water

vapour in free stream to the saturation concentration at the free stream temperature of 30°C, Cy,. Cg,, is obtained from

Steam Tables.)

$olution, This problem involves simultaneous heat and mass transfer.

Data:

= 3944 x 107 kg/s per metre length,

T, = 30°C (temperature of atmospheric air)
T, = 20°C (wet bulb temperature)
In steady state, we can state the energy balance as:
heat transfer from air stream to wet cloth = latent heat of evaporation of water

ie. AT, -T,) =h,-A-(p, — pYig (@)
Remember Cu =Py

. h

ie. W (T, - T,) = (py— P hy ..{b)

-
But, the ratio, k/h,, is given from Lewis relation, as:
z
h 2 als
¥ srorte <[]
Then, Eq. b becomes:

2
a3
PG (&) T = oy ol
30+20
Now, properties of air are evaluated at the film temperature T, = >
i.e. properties at: Ty= 25°C
Air pi=1186kg/m’ G, = 1005]/(kgQ)  a= 2.18-107° m%/s

D = 0.26-107 m?/s (from Tables) % = 0.838 = Le = Lewis number

Water:
hy = 2454.1-10° ] /kg at 20°C

Saturated concentration of water vapour at T,, = 20°C is determined from:

Pu-M, 233918

Pu= R, T, 8314293

W

=(.01728
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Note that in the above, p,, = saturation pressure = 2339 Pa, corresponding to T, = 20°C, from Steam Tables.
ie. P = 001728 kg/m’ = C, = saturation concentration {density) of water
vapour at wet bulb temperature of 20°C

Then, from Eq. c:
2
a3
2 Cp' B : (Ta' - Tm) = (pw - pa)' hfg (]
2
. fa)e
. p(p[B) '(Tn_Tw)
l.e. Pai= Py — P
fg
ie £ = 0013 kg/m® (concentration of water vapour in free strean)
Relative humidity:
Saturation concentration at T, = 30°C:  p = 0.0304 kg/m’ (from Steam Tables)
Therefore,
RH:= £o
P
ie RH = 0.426 = 42.6% {relative humidity of free stream.)

14.14 Summary
Mass transfer is an important phenomenon with vast industrial applications.

Diffusion mass transfer occurs due to concentration difference and is similar to heat conduction. The gov-
erning law is the Fick’s law of diffusion, analogous to the Fourier’s law of conduction, i.e.

jp= s __ Dy ﬁ kg/(smz) : ..{14.18)
A dx

Dy is the diffusion coefficient for species B in a mixture of B and C. Values of diffusion coefficients for gases,
liquids and solids was discussed.

Equimolal diffusion of gases in a binary mixture was studied. This is important in distillation process, and
in venting a gas from a pipe line to atmosphere. :

Next, the diffusion of a gas in a stationary gas column was explained. This phenomenon has applications in
absorption and humidification. Evaporation of water vapour in a stationary column of air was studied, as an
example.

Transient diffusion was explained briefly. Equations for transient diffusion are written by analogy with
transient conduction.

Convective mass transfer involves transport of mass across the boundary and is affected by the flow field.
Analogous to ‘heat transfer coefficient’, a ‘mass transfer coefficient’ is also defined and the governing law is
similar to the Newton’s law of cooling.

Analogy between heat and mass transfer was explained and relations for convective mass transfer were
written for various geometries and flow conditions, by analogy with heat transfer relations under similar situa-
tions.

Finally, topic of simultaneous heat and mass transfer, which has important applications in the field of air
conditioning, was discussed.

Questions

1. State Fick’s law of mass transfer by diffusion and explain its analogy with Fourier’s law of conduction. [M.U.]

2. Define: (a} diffusion coefficient, {b) mass transfer coefficient.

3. Write a short note on diffusion coefficient in a binary mixture of: (a) gases (b) liquids, and (¢) solids.

4. How does D depend on pressure and temperature in a binary gas mixture?

5. Derive a mass diffusion equation in general form in cartesian coordinates for mass diffusion in stationary me-
dium in the same lines as that of general heat conduction equation, in differential form.
Using the above general equation show that the governing differential equation for steady state diffusion
through a plane membrane reduces to the form:
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4Cy _
dx®

where, C, is the concentration of species A. M.U.]
Define: Sherwood number, Schmidt number and Lewis number. fM.U]
Derive a basic differential equation for equimolal counter-diffusion in gases and solve the same for constant
pressure situation to get the mass flux of species A as:

-D-Ms (P —Fas)

R, T Ax
where, P,, and P, are partial pressures of species A at x and (x + Ax) locations, M, is the molecular mass of
species A, T is the temperature of gases in Kelvin, and R, is the Universal gas constant. [M.U]
Prove that during isothermal evaporation, rate of mass transfer of water vapour into atmospheric air is given by:
N, = DPAPa = P)
R, T-Ax-P,

Notations in the above equation are as defined earlier. M.U]
Write a short note on the analogy between momentum, heat and mass transfer. MU
Explain in brief two main methods of mass transfer and bring out their differences. M.U]
Show that kinematic viscosity, thermal diffusivity and diffusion coefficient have the same units. M.U]
For convective mass transfer, name the non-dimensional number that plays the same role in mass transfer as
that of Prandt] number in heat transfer and write down an expression for the same. M.U]
Derive Stefan’s law (isothermal evaporation of water). [M.]
Derive an equation to determine the amount of mass transferred through a composite plane wall with one layer

of diffusivity D,, and another with diffusivity D,,, with concentrations C,; and C,; on either side of wall, wall
thicknesses Ax; and Ax,. M.U]

Mass flux =

kg mole/(s m?)

Problems

1.

Air is contained in a vessel at a temperature of 20°C and pressure of 3 bar. Assuming the partial pressures of O,
and N, to be in ratios of 0.21 and 0.79, respectively, calculate: (i) Molar concentrations (ii) Mass concentrations
{i.e. densities), (iii) Mass fractions, and (iv) Molar fractions.
Calculate the diffusion coefficient of CO, in air at 20°C and 1 atm. pressure. Ther, calculate the value of [ for a
pressure of 3 atm. and temperature of 57°C.
A steel, rectangular container having walls 10 mm thick, is used to store gaseous hydrogen at elevated pressure.
The molar concentrations of hydrogen in stee} at the inside and outside surfaces are 1.1 kg.mole/ m® and zero,
respectively. Assuming the diffusion coefficient for hydrogen in steel to be 0.25 x 1072 m?/s, calculate the molar
diffusion flux for hydrogen through steel.
Hydrogen gas at 2 atm., 25°C is flowing through a rubber pipe, 25 mm ID, 50 mm OD. Selubility of H; in rubber
is 0.053 cm® of H, per cm® of rubber at 1 atm. pressure. Diffusivity of H, through rubber is 0.7 x 107 m?/h. Find
the loss of hydrogen per metre length of pipe. [M.U.J
Hydrogen gas is stored at 358 K in a 3.0 m 1D, 5 cm thick spherical container made of Nickel. Molar concentra-
tion of hydrogen in Ni at the inner surface is (.12 kg.mole/ m°® and is equal to zero at the outer surface. Deter-
mine the mass diffusion rate of hydrogen through the walls of the container. (Take D = 1.2 % 1072 m?/s)
Helium gas is stored at a pressure of 4 bar and 293 K in a 0.3 m ID, 3 mm thick spherical container made of
fused silica. Determine the rate of pressure drop due to diffusion. Given: D = 0.04 x 1072 m?/s, and solubility of
gas at the solid surface on the inside is 18 x 10~ kg/ {m*Pa).
In problem 6, if the container is a long cylinder of diameter 4.3 m, calculate mass of helium lost by diffusion per
metre length. Rest of the data are same.
A gas mixture consists of oxygen and nitrogen at 1 bar and 27°C. The oxygen content, by volume, at two planes
3 mm apart are 15 % and 30%, respectively. Calculate the rate of diffusion in kg mole/(sm?), if:

(i) nitrogen is non-diffusing

(i) there is equimolar counter-diffusion of the two gases.
Take D = 0.181 cm?/s. MU]
A tank contains a mixture of CQ, and N, in the mole proportions of 0.3 and 0.7 at 1 bar and 290 K. It is
connected by a duct of cross-sectional area 0.1 m? to another tank containing a mixture of CO, and N, in the
molal proportions of 0.7 and 0.3. The duct is 0.75 m long. Determine the diffusion rates of CO, and N, in kg/s.
Given: D = 0.16 x 107*m?/s for CO,/N, at 293 K from tables.
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A spherical ball of ice, 1.5 cm diameter is suspended in still dry air at 1.013 bar. Calculate the initial rate of
evaporation at the surface.

Take D = 0.256 x 10~ m?/s. At 0 deg.C, saturated vapour pressure = 0.0061 bar.

Each of two large vessels contains uniform mixture of nitrogen and carbon dioxide at 1 bar and 288.9 K. Vessel
1 contains 90 mole % of N, and 10 mele % CO,, whereas vessel 2 contains 20 mole % N, and 80 mole % CO,.
The two vessels are connected by a duct of (.15 m ID and 1.22 m long. Determine the rate of transfer of N,
between the two vessels in kg/s, assuming steady state transfer. Mass diffusivity for N,-CQ; mixture at 1 bar
and 288.9 K may be taken as: :
D = 0.16 x 10~* m?/sec. [M.U]
Estimate the evaporation rate of water, which is available at the bottom of a well 2.5 m diameter and 5 m deep,
into dry atmospheric air at 25°C. The diffusion coefficient is 0.0925 m%/h and the atmospheric pressure is 1 bar.
The partial pressure of water at the water surface is 0.0312 bar. [M.U]
A pan 20 mm diameter 20 mm deep, is filled with water to a level of 10 mm and is exposed to dry air at 40°C.
Calculate the time required for all water to evaporate. What will be the change in time required if the temp of air

is 30°C? D = 0.236 cm?/s? M.L]
Estimate the diffusion rate of water at 27°C in a test tube 20 mm diameter 5 cm deep, into dry air at same
temperature. Take D = 0.26 em’/s. Saturated vapour pressure of water at 27°C = 0.035 bar. M.U]

Water at 20°C js spilled in a room. Thickness of water layer is 1 mm. Absolute humidity of air is 3 g of vapour
per kg of dry air. Calculate time required for complete evaporation of water spilled, if evaporation is by molecu-
lar diffusion through an air film of 5 mm thickness.

Atmospheric temperature and pressure are 1 bar and 20°C, respectively. Assume surface area of floor as 1 m’.
Take D = 0.26 x 10~ m?/s. [M.U]
[Hint: Remember:

M,

Pz
Paz
and, p,p + ppp = 1, where m,, = mass of water vapour m, = mass of dry air, M, and M,, are the molecular weighs
of air and water vapour, respectively.]
A mild steel piece has uniform, initial carbon concentration of 0.15% by mass. It is exposed to a carburising
atmosphere in a furnace, where the surface concentration is maintained at 1.2%. Determine how long the piece
must be kept in the furnace for the concentration of carbon at a location 0.4 mm below the surface to reach 1%.
Take D) = 5 x 107 m¥/s.
Ajr at 1 atm. and 25°C, containing small quantities of iodine, flows with a velocity of 4.5 m/s inside a 5 cm
diameter tube. Determine the mass transfer coefficient for iodine transfer from the air stream to the surface.
Assume: D = 0.82 x 107 m?/s; v = 155 x 1076 m?/s.
Air at a temperature of 21°C, and RH of 40% flows over a water surface at a velocity of 1.2 m/s. Length paraliel
to flow is 15 cm. Average surface temperature is 15°C. Estimate the amount of water evaporated per hr/m”. of
surface area. Partial pressure of water vapour at 21°C and 40% RH is 0.011 bar and at 15°C and saturated, the
vapour pressure is 0.017 bar. Viscosity and density of air are: 18.38 x 10 kg/m.s and 1.22 kg/m’, respectively.
Assume D = 0.256 x 107 m®/s, p, = 1.013 bar, and

My
m,

S

w

]

Sh = 0.023-Re™. §¢5 [M.U]
Air at a temperature of 30°C, and RH of 15% flows through a pipe of 15 mm ID with a velocity of 5 m/s. The
inside surface of the tube is constantly wetted with water such that a thin water film is maintained on the
surface. Determine the amount of water evaporated per sq.m of surface area.
Given: v = 16 x 107 m?/s, Sc = 0.6, and D = 0.26 x 10™* m?/s.
Atmospheric air at T, = 50 deg.C was blown past a wet bulb thermometer, the wet bulb reading obtained was T,
= 30°C. What is the value of concentration of water vapour C, in the free stream? Also, determine the relative
humidity (RH) of the free stream. (Note: RH is equal to the ratio of concentration C, of water vapour in free
stream to the saturation concentration at the free stream temperature of 50°C, C,,,.C,,, is obtained from Steam
Tables.)
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Appendix

TABLE A-1 Conversion factors

Length m 3.2808 ft
ft 0.304804 m
Area m? 0.764 2
2 1,308901 m2
Volume m® 35.34 #
#? 0.028297 me
Mass kg '2.3048 Ib
' b 0.433915 kg
Density kg/m? 0.062428 Ib/#t®
b/t 16.01845 kg/m?®
Temperature K 0.555556 R
R 1.8 K
Mass transfer coefficient m/s 11811 ft/h
ftth 8.47E-05 m/s
volume fiow rate m3s 127130 #*h
#*h 7.87E-06 mé/s
Acceleration m/s? 42520000 #nh?
firh? 2 35E-08 m/s®
Energy J 0.000948 Btu
: Btu 1054.997 J
Force N 0.22481 I
I, 4.448201 N
Heat transfer rate W 3.4123 Btu/h
Btu/h 0.293057 w
Heat flux W/m? 0.3171 Btu/h ft?
Btu/h 3.153579 wim?
Heal generation rate w/m? 0.09665 Btuh f°
Btuh f 10.34661 W/m?®
Heat transfer coefficient W/mZK 0.17612 Btuh t# F
Btuwh 2 F 5.677947 W/imK
Kinetic viscosity & diffusivity m2/s 38750 f2/h
2 2 58E-05 m?/s
Latent heat Jikg 0.00043 Biuflb,,
Btuwib,, 2325.852 Jikg

Conid.



Contd.

Mass flow rate kg/s 7936.6 b
‘ ) 0.000126 kg's
Pressure and stress N/m? 0.020886 iyt
ibyft? 47.87806 N/m?

Specific heat JikgK 0.000239 Btu/lb, F
Btuib,F 4186.553 J/IkgK

Thermal conductivity W/mK ) 0.57782 Btwh ft F
Btu/h ft F 1.730643 WimiK
Thermal resistance KW 0.56275 F/hBtu
F/h.Btu 1.895735 Kw
Dynamic viscosity kg/ms 2419.1 Ib/fth
Ib,/fth 0.000413 kg/ms
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analysis with variable thermal conductivity, 200
application of fin theory fur error estimation, 261
applications of heat transfer, 1
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basic conduction relations, with heat generation, 215
basic equations _for forced convection, 469

basic equations for natural convection, 519
boiling and condensation, 29

boiling and evaporation, 530

boiling heat transfer, 530

boiling modes, 530

boiling regimes and boiling curve, 531

boundary and initial conditions, 31

boundary layer equations, exact solutions of, 402
burnout phenomenon, 532
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combined heat transfer mechanism, 8

combined natural and ferced convection, 516

compact heat exchangers, 622

composite cylinders, 79

composite spheres, 95

concentrations, velocities and fluxes, 723

condensation heat transfer, 550

conduction with variable area, 66

conduction, 3, 22

conservation of energy equation for the boundary layer,
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conservation of mass, 390

conservation of momentum equation, 391

convection boundary condition, 33

convection, 5, 23

convective mass transfer, 752

correction factors for multi-pass and cross-flow heat
exchangers, 600

counter-flow heat exchanger, 591

criteria for lumped system analysis, 269

critical thickness of insulation, 101

cylinder with uniform internal heat generation, 166

cylindrical systems, 74

D

dielectric heating, 204

differential equations for the boundary layer, 390

dimensional analysis of natural convection, 478

dimensional analysis, 394
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529

drop-wise condensation, 574
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effect of variable thermal conductivity, 113
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empirical relations for natural convection, 484
equimolal counter-diffusion in gases, 740

F

Fick’s law of diffusion, 725

film condensation and flow regimes, 551

film condensation inside horizontal tubes, 573

fin effectiveness, 255

fin efficiency, 250

fin formulae, 233

fin of finite length losing heat from its end by convection,
229

fin of finite length with insulated end, 226

fin of finite length with specified temperature at its end,
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